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Abstract. In this work, we conduct research that includes the
following boundaries related to the main equation which is the
viscoelastic Kirchhoff type equation with the following nonlinear
source and time-varying delay

u(x, t) = 0 on Γ0 × [0,+∞),(
M(x, t, ∥∇u(t)∥2) + ν2) ∂u(x, t)

∂n
+ g(ut) = 0 on Γ1 × [0,+∞).

Under the smallness conditions from boundaries related to initial
condition with respect to nonlinear coefficient and the relaxation
function and other assumptions, we prove the energy decay rates of
solutions for the Kirchhoff type energy.
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1. Introduction

This research focuses on the following problem:

utt(x, t)−M(x, t, ∥∇u(t)∥2)∆u(x, t) +
∫ t

0
h(t− τ)div[a(x)∇u(τ)]dτ(1)

+|u|γu+ µ1ut(x, t) + µ2ut(x, t− s(t)) = 0 in Ω× R+,

ut(x, t− s) = z0(x, t) in Ω× [−s(0), 0),(2)

u(x, t) = 0 on Γ0 × R+,(3) (
M(x, t, ∥∇u(t)∥2) + ν2

) ∂u(x, t)
∂n

+ g(ut) = 0 on Γ1 × R+,(4)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,(5)

where Ω be a bounded open set of RN (N ≥ 1) with a piecewise-
smooth boundary of class C2. We consider Γ0, Γ1 a partition of Γ, with
Γ0 and Γ1 having positive Lebesgue measures and Γ0 ∩ Γ1 = ∅. Let n
be the outward normal to Γ. γ is positive. Other conditions such as
M,h, a be in next section. Moreover, µ1 and µ2 are real numbers in
that µ1 is only a positive constant, s > 0 represents the time-varying
delay. In fact, u0, u1 z0 are initially given functions belonging to suitable
space and u(x, t) is the transversal displacement of the strip at spatial
coordinate x and time t in the real world application.

Time delays frequently occur in various physical, chemical, biological,
thermal, and economic phenomena. Recently, the study of controlling
PDEs with time delay effects has gained significant attention. For ex-
ample, see [1, 2] and the references therein. The presence of a delay
could be a stabilizing influence. Even a very small delay can destabilize
a system, preventing issues like stick-slip in the mass production process
for mechanical engineering.

This issue originates from the mathematical modeling of axially mov-
ing viscoelastic materials in real-world systems. Viscoelastic materi-
als are renowned for their inherent damping properties, attributed to
their unique ability to remember past deformations. Mathematically,
these damping effects are represented using integro-differential opera-
tors. Moreover, the stability effects are influenced by time-varying de-
lays. Consequently, our problem (1)-(5) does not include weak or strong
damping terms. Our purpose, unlike the previous results [3] and [4], is
focused not only on the memory effects but also on the time-varying de-
lay and the boundaries considering nonlinear coefficients in the problem.
Recently, numerous authors have explored issues related to Timoshenko
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or basic hyperbolic types for viscoelastic materials (see [5, 6]). Addition-
ally, various researchers address the asymptotic behavior of solutions,
nonlinear functions, and control theory considering viscoelasticity (see
[7–10]). Moreover, numerous engineering devices experience transverse
vibrations in axially moving strings. This model is widely utilized, par-
ticularly for long and narrow subjects with negligible flexural rigidity,
such as threads, wires, magnetic tapes, belts, band saws, and cables.
To better understand the linear or nonlinear dynamic behavior of these
moving continua, various mathematical models and simulations have
been developed [11–17]. The mathematical model for axially moving
strings was first introduced by Kirchhoff [18] (and see Carrier [11]), and
the original equation is presented as follows:

ρh
∂2u

∂t2
=
(
p0 +

Eh

2L

∫ L

0

(∂u
∂x

)2
dx
)∂2u
∂x2

for 0 < x < L, t ≥ 0, where u = u(x, t) is the lateral displacement at
the space coordinate x and time t; E, the young’s modulus; ρ, the mass
density; h, the cross section area; L, the length; and p0, the initial axial
tension.Recently, numerous authors have examined problems involving
the extended Kirchhoff type equation, which pertains to axially moving
heterogeneous or non-heterogeneous materials, including the nonlinear
vibrations of beams, strings, plates, and membranes (see [5–7]).

In this paper, we will primarily focus on the decay rate of energy
in a viscoelastic system with Kirchhoff-type boundaries, considering an
internal time-varying delay term. We derive the proof by employing
smallness condition functions related to the Kirchhoff coefficient, the
relaxation function, and internal time-varying delay. Essentially, the
energy difference comprises Kirchhoff-type potential energy and internal
time-varying delay.

The main focus of this paper is the treatment of the boundaries in
the estimation of energy. The principal idea of this paper is that the
coefficient of the norm derived through calculations is negative due to
the assumption of the smallness ofM(·), which can minimize the impact
on the boundedness of energy.

This paper is structured as follows: In Section 2, we introduce the
necessary notations and materials (including assumptions, lemmas, etc.)
for our study and present a theorem on global existence and energy decay
rate (the main result). Section 3 provides the proof of our main result.
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2. Preliminaries and main results

Initially, we present the fundamental bracket pairing within Ω ⊂ RN .

⟨φ,ψ⟩ ≡
∫
Ω
(φ,ψ)dx,

provided that (φ,ψ) ∈ L1(Ω). And we set the norms as follows.

∥u∥Lp(Ω) =

(∫
Ω
|u|pdx

) 1
p

.

For the sake of simplicity, we denote ∥u∥L2(Ω), ∥u∥L1(0,+∞), ∥v∥L∞(0,+∞)

by ∥u∥, ∥v∥L1 , ∥v∥L∞ respectively.
Throughout this paper, we define

V = {u|u ∈ H1(Ω), u = 0 on Γ0},
In the following sections, we outline the general hypotheses.

(A1) h : R+ → R+ is a bounded C1 function satisfying h(0) > 0, and
there exists positive constant t0, ζ1, ζ2, ζ3 such that

−ζ1 ≤ h′(t) ≤ −ζ2h(t), ∀t > t0,

0 ≤ h′′(t) ≤ ζ3h(t), ∀t > t0.

(A2) a : Ω → R+ is a nonnegative bounded function and a(x) ≥ a0 > 0
on Ω with

m0

a0
≥ 1− ∥a∥∞

∫ ∞

0
h(s)ds = l > 0,

where m0 is in (B2). And also, the following smallness condition
satisfy

ϵ7 < a20

∫ t

0
h(s)ds.

(A3) γ satisfies

0 ≤ γ ≤ 2

n− 2
, n ≥ 3,

γ ≥ 0, n = 1, 2.

(A4) The initial data satisfy

u0 ∈ V ∩H2(Ω), u1 ∈ V,

∂u0
∂n

+ g(u1) = 0 on Γ1.

(B1) M(x, t, λ) is a real-valued function of class C2 on x ∈ Ω, t ≥
0, λ ≤ 0.
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(B2) 0 < m0 ≤ M(x, t, λ) ≤ C0f(λ) with M(x, t, λ) = M1(x, t) +
M2(x, t, λ). And also, the following smallness condition satisfy

f(λ) <

√
a0h(t)

2 − CpC̃1 + ϵ2
(
m0 − 1

2

)
ϵ3ϵ8

.

(B3)
∂M1
∂t ≤ 0,

∣∣∣∂M2
∂t

∣∣∣ ≤ C1g1(λ),
∣∣∂M
∂λ

∣∣ ≤ C2g2(λ), 0 < m1 ≤Mx(x, t, λ).

(B4) f, g1, g2 ∈ C1([0,+∞);R+) are strictly increasing.
Furthermore, Ci (i = 0, 1, 2) is a positive constant.

(C1) There exists a non-increasing differential function ζ : R+ → R+

satisfying

ζ(t) > 0, h′(t) ≤ −ζ(t)h(t) = 0, ∀t > 0.

(C2) The function g is a nondecreasing C1 function and g(0) = 0. Fur-
thermore, there exist positive constants α and β such that

g(ξ)ξ ≥ α|ξ|2, ∀ξ ∈ R,

|g(ξ)| ≤ β|ξ|, ∀ξ ∈ R.

For the time-varying delay, we assume as in [1] that there exist posi-
tive constants s0, s such that

(6) 0 < s0 ≤ s(t) ≤ s, ∀t > 0.

Moreover, we assume that the speed of the delay satisfies

(7) s′(t) ≤ d < 1, ∀t > 0,

which is

s ∈W 2,∞([0, T ]), ∀t > 0

and that µ1, µ2 satisfy

(8) |µ2| <
√
1− dµ1.

As in [1], let us introduce the function

z(x, ϱ, t) = ut(x, t− s(t)ϱ), x ∈ Ω, ϱ ∈ (0, 1), t > 0.
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Then, the problem (1)-(5) is equivalent to

utt(x, t)−M(x, t, ∥∇u(t)∥2)∆u(x, t) +
∫ t

0
h(t− τ)div[a(x)∇u(τ)]dτ(9)

+|u|γu+ µ1ut(x, t) + µ2z(x, 1, t) = 0 in Ω× (0,+∞),

s(t)zt(x, ϱ, t) + (1− s′(t)ϱ)zϱ(x, ϱ, t) in Ω× (0, 1)× (0,+∞),(10)

ut(x, t) = z(x, 0, t) on Ω× (0,+∞),(11)

z(x, ϱ, t) = z0(x,−ϱs(0)) in Ω× (0, 1),(12)

u(x, t) = 0 on Γ0 × [0,+∞),(13)(
M(x, t, ∥∇u(t)∥2) + ν2

) ∂u(x, t)
∂n

+ g(ut) = 0 on Γ1 × [0,+∞),(14)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,(15)

In the following, we give a lemma which will be useful in this paper.

Lemma 2.1. Denote (h⋄u)(t) =
∫ t
0 h(t− τ)∥

√
a(x)(u(t)−u(τ))∥2dτ .

Then we have

∫ t

0
h(t− τ)⟨a(x)∇u(τ),∇u′(t)⟩dτ =− 1

2

d

dt
[(h ⋄ u)(t)] + 1

2
(h′ ⋄ u)(t)

+
1

2

d

dt

[
∥
√
a(x)∇u(t)∥2

∫ t

0
h(s)ds

]
− 1

2
h(t)∥

√
a(x)∇u(t)∥2.

(16)
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Proof. A direct computation shows that∫ t

0
h(t− τ)⟨a(x)∇u(τ),∇u′(t)⟩dτ =

∫ t

0
h(t− τ)⟨a(x)∇u(τ)− a(x)∇u(t),∇u′(t)⟩dτ

+

∫ t

0
h(t− τ)⟨a(x)∇u(t),∇u′(t)⟩dτ

=− 1

2

∫ t

0
h(t− τ)

[
d

dt
∥
√
a(x)(∇u(τ)−∇u(t))∥2

]
dτ

+
1

2

∫ t

0
h(t− τ)

[
d

dt
∥
√
a(x)∇u(t)∥2

]
dτ

=− 1

2

d

dt

[∫ t

0
h(t− τ)∥

√
a(x)(∇u(τ)−∇u(t))∥2dτ

]
+

1

2

∫ t

0
h′(t− τ)∥

√
a(x)(∇u(τ)−∇u(t))∥2dτ

+
1

2

d

dt

∫ t

0
h(t− τ)∥

√
a(x)∇u(t)∥2dτ

− 1

2
h(t)∥

√
a(x)∇u(t)∥2.

Lemma 2.2. (General Poincaré Inequality).
Denote H1

Γ0
(Ω) = {u|u ∈ H1(Ω), u|Γ0 = 0} and meas(Γ0) > 0. Then

there exists a positive constant B such that ∥u∥L2(Ω) ≤ B∥∇u∥L2(Ω), for

all u ∈ H1
Γ0
(Ω).

Proof. The proof can be found in [22].

Then, we can state our result as follows.

Theorem 2.3. Let the assumptions (A1), (A4), (B1)-(B4) and (C1)
hold. Then there exists a unique solution u of the problem (9)-(15)
satisfying

u ∈ L∞(0, T ;V ∩H2(Ω)), u′ ∈ L∞(0, T ;V ), u′′ ∈ L∞(0, T ;L2(Ω)),

and

u(x, t) → u0(x) in V ∩H2(Ω); u′(x, t) → u1(x) in V ;

moreover,
z(x, ϱ, t) → z0(x) in L

2(Ω× (0, 1)),

u′ ∈ L∞(0, T ;L2(Γ1),

as t→ 0.
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Proof. By using Galerkin’s approximation and a routine procedure
similar to that of cite [5, 20], by using Lemma 2.1 and Lemma 2.2, we
can the global existence result for the solution subject to (1)-(5) under
the assumptions (A1)-(A4), (B1)-(B4) and (C1)-(C1).

Theorem 2.4. Let u be the global solution of the problem (1)-(5)
with the above all conditions. We define the Kirchhoff type energy
functional E(t) as

E(t) =
1

2

[
∥u′(t)∥2 +

∫
Ω
M(x, t, ∥∇u(t)∥2)|∇u(x, t)|2dx+

2

γ + 2
∥u′(t)∥γ+2

γ+2

]
+
ζ

2

∫ t

t−s(t)

∫
Ω
eη(s−t)u2t (s)dxds,

where ζ, η are suitable positive constants.
Then the energy functional decays exponentially to zero as the time goes
to infinity, that is,

E(t) ≤ κe−ϑt, ∀t ≥ 0

where κ, ϑ are positive constants.

3. Proof of Theorem 2.4 (Energy decay)

Proof. Multiplying u′ on both sides of Eq.(1), integrating the result-
ing equations over Ω, and using the Green formula and (3), we have

⟨u′′(t), u′(t)⟩+ ⟨M(x, t, ∥∇u(t)∥2)∇u(t),∇u′(t)⟩
+ ⟨Mx(x, t, ∥∇u(t)∥2)∇u(t), u′(t)⟩

+

〈
ν2
∂u(t)

∂n
+ g(ut), u

′(t)

〉
Γ1

−
∫ t

0
h(t− τ)⟨a(x)∇u(τ),∇u′(t)⟩dτ + ⟨|u|γu, u′⟩

+ ⟨µ1ut(x, t) + µ2ut(x, t− s(t)), u′⟩ = 0,

(17)
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that is

d

dt
E(t) =

1

2

∫
Ω

∂

∂t
M1(x, t)|∇u(x, t)|2dx

+
1

2

∫
Ω

∂

∂t
M2(x, t, ∥∇u(t)∥2)|∇u(x, t)|2dx

+

[∫
Ω

∂

∂λ
M2(x, t, ∥∇u(t)∥2)|∇u(x, t)|2dx

] 〈
∇u′(t),∇u(t)

〉
− ⟨Mx(x, t, ∥∇u(t)∥2)∇u(t), u′(t)⟩

−
∫ t

0
h(t− τ)⟨a(x)∇u(τ),∇u′(t)⟩dτ

+
ζ

2

∫
Ω
u2t (t)dx− ζ

2

∫
Ω
e−ηs(t)u2t (t− s(t))(t− s′(t))dx

−
〈
ν2
∂u(t)

∂n
+ g(ut), u

′(t)

〉
Γ1

− ηζ

2

∫ t

t−s(t)

∫
Ω
e−η(s−t)u2t (s)dxds,

(18)

where

E(t) =
1

2

[
∥u′(t)∥2 +

∫
Ω
M(x, t, ∥∇u(t)∥2)|∇u(x, t)|2dx+

1

γ + 2
∥u′(t)∥γ+2

γ+2

]
+
ζ

2

∫ t

t−s(t)

∫
Ω
eη(s−t)u2t (s)dxds.

(19)
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From (B3) and Hölder inequality, and (6), (7) and some mainipula-
tions as in [1], we obtain

E′(t) ≤ ∥u(t)∥2
{
C1

2
g1(∥∇u(t)∥2) + C2g2(∥∇u(t)∥2)∥∇u′(t)∥∥u(t)∥

}
− ⟨Mx(x, t, ∥∇u(t)∥2)∇u(t), u′(t)⟩

−
∫ t

0
h(t− τ)⟨a(x)∇u(τ),∇u′(t)⟩dτ

−
(
µ1 −

|µ2|
2
√
1− d

− ζ

2

)∫
Ω
u2t (t)dx

−
(
e−ηs ζ(1− d)

2
− |µ2|

√
1− d

2

)∫
Ω
u2t (t− s(t))dx

−
〈
ν2
∂u(t)

∂n
+ g(ut), u

′(t)

〉
Γ1

− ηζ

2

∫ t

t−s(t)

∫
Ω
e−η(s−t)u2t (s)dxds.

(20)

By (B3), (16) and Young’s inequality, we have

E′(t) ≤C̃1∥u(t)∥2 + ϵ1m1∥∇u(t)∥2 +
m1

4ϵ1
∥u′(t)∥2

− 1

2

d

dt
[(h ⋄ u)(t)] + 1

2
(h′ ⋄ ∇u)(t)

+
1

2

d

dt

[
∥
√
a(x)∇u(t)∥2

∫ t

0
h(s)ds

]
− 1

2
h(t)∥

√
a(x)∇u(t)∥2

−
(
µ1 −

|µ2|
2
√
1− d

− ζ

2

)∫
Ω
u2t (t)dx

−
(
e−ηs ζ(1− d)

2
− |µ2|

√
1− d

2

)∫
Ω
u2t (t− s(t))dx

−
(
α− βν2

m0 + ν2

)
∥u′(t)∥2Γ1

−m3∥u′(t)∥2

− ηζ

2

∫ t

t−s(t)

∫
Ω
e−η(s−t)u2t (s)dxds,

(21)
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where

C̃1 =
C1

2
g1(∥∇u(t)∥2) + C2g2(∥∇u(t)∥2)∥∇u′(t)∥∥u(t)∥(22)

is a positive constant. And ϵ1 is also a positive constant.
Define the new energy functional E1(t) as follows

(23) E1(t) = E(t) +
1

2
(h ⋄ ∇u)(t)− 1

2
∥
√
a(x)∇u(t)∥2

∫ t

0
h(s)ds.

For positive constants ϵ2 and ϵ3, let us define the perturbed modified
energy by

(24) F (t) = E1(t) + ϵ2φ(t) + ϵ3ψ(t),

where

(25) φ(t) = ⟨u′(t), u(t)⟩.
and

(26) ψ(t) = −
∫ t

0
h(t− τ)⟨a(x)u′(t), u(t)− u(τ)⟩dτ.

By using the Cauchy’s inequality, Hölder inequality and Poincarè in-
equality, there exist positive constants α1, α2 such that for each t > 0

(27) α1F (t) ≤ E1(t) ≤ α2F (t).

Proposition 3.1. (Energy equivalence)

α1F (t) ≤ E1(t) ≤ α2F (t) for all t ≥ 0,

where α1 and α2 are positive constants.

Proof. Now, we will fix ζ in the energy E(t) such that

(28) 2µ1 −
|µ2|√
1− d

− ζ > 0,

(29) ζ − |µ2|√
1− d

> 0

and

(30) η <
1

s

∣∣∣∣log |µ2|
ζ
√
1− d

∣∣∣∣ .
Then, similar as Proposition 3.1. in [3], we can choose two constants α1

and α2. In fact, the existence of such a constant η is guaranteed by the
assumption (8).
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Using the trace theorem and Cauchy’s inequality, and noting (C2), we
obtain
(31)

|⟨g(u′)u⟩Γ1 | ≤ ∥g(u′)∥Γ1∥u∥Γ1 ≤ βλ∥u′∥Γ1∥∇u∥ ≤ ϵ3∥∇u∥2+
β2λ2

4ϵ3
∥u′∥2Γ1

Then from (A1) and (21),(23) and (28)-(31), we have

E′
1(t) ≤∥u(t)∥2C̃1 + ϵ1m1∥∇u(t)∥2 +

m1

4ϵ1
∥u′(t)∥2

− ζ2
2
(h ⋄ ∇u)(t)− 1

2
a0h(t)∥∇u(t)∥2

− C2

∫
Ω
[u2t (t) + u2t (t− s(t))]dx

− β2λ2

4ϵ3

(
1− ν2

m0 + ν2

)
∥∇u(t)∥2Γ1

− ηζ

2

∫ t

t−s(t)

∫
Ω
e−η(s−t)u2t (s)dxds

≤∥u(t)∥2C̃1 + ϵ1m1∥∇u(t)∥2 +
m1

4ϵ1
∥u′(t)∥2

− β2λ2

4ϵ3

(
1− ν2

m0 + ν2

)
∥∇u(t)∥2Γ1

− ζ2
2
(h ⋄ ∇u)(t)− 1

2
a0h(t)∥∇u(t)∥2 − C2

∫
Ω
u2t (t− s(t))dx,

(32)

where, C2 is some positive constant. Since m0 is positive due to (B2),
we no longer need to consider the norm on the boundary. And also,
by (A2), the energy E1(t) is a positive functional. Applying Poincarè
inequality to (32), we deduce

E′
1(t) ≤

(
CpC̃1 + ϵ1m1 −

1

2
a0h(t)

)
∥∇u(t)∥2

+
m1

4ϵ1
∥u′(t)∥2 − ζ2

2
(h ⋄ ∇u)(t)− C2

∫
Ω
u2t (t− s(t))dx,

(33)
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where Cp is the Poincarè coefficient. Meanwhile, we note from (A1) and
(A2) that

E1(t) ≥
1

2
∥u(t)∥2 + 1

2

∫
Ω
M(x, t, ∥∇u(t)∥2)|∇u(x, t)|2dx

+
1

2

(
1− ∥a∥∞

∫ t

0
h(s)ds

)
∥∇u(t)∥2 + 1

2
(h ⋄ u)(t)

+
1

γ + 2
∥u(t)∥γ+2

γ+2 +
ζ

2

∫ t

t−s(t)

∫
Ω
eη(s−t)u2t (s)dxds

≥l
[1
2
∥u′(t)∥2 + 1

2

∫
Ω
M(x, t, ∥∇u(t)∥2)|∇u(x, t)|2dx+

1

γ + 2
∥u(t)∥γ+2

γ+2

+
ζ

2

∫ t

t−s(t)

∫
Ω
eη(s−t)u2t (s)dxds

]
.

(34)

So, we deduce the relation 0 ≤ E(t) ≤ l−1E1(t). Therefore, the uniform
decay of E(t) is a result of the decay of E1(t). In fact, using (1), we have

φ′(t) =⟨u′′(t), u(t)⟩+ ∥u′(t)∥2.

=∥u′(t)∥2 +
〈
u(t),M(x, t, ∥∇u(t)∥2)∆u(x, t)

−
∫ t

0
h(t− τ)div[a(x)∇u(τ)]dτ − |u(t)|γu(t)

− µ1ut(x, t)− µ2ut(x, t− s(t))
〉

=∥u′(t)∥2 −
∫
Ω
M(x, t, ∥∇u(t)∥2)|∇u(t)|2dx

+

∫ t

0
h(t− τ) ⟨a(x)∇u(τ),∇u(t)⟩]dτ − |u(t)|γu(t)

− µ1

∫
Ω
u(t)ut(t)dx− µ2

∫
Ω
u(t)ut(t− s(t))dx.

(35)
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By Cauchy inequality and Young’s inequality, we have

∣∣∣∣∫ t

0
h(t− τ) ⟨a(x)∇u(τ),∇u(t)⟩]dτ

∣∣∣∣
≤1

2
∥∇u(t)∥2 + 1

2

∥∥∥∥∫ t

0
h(t− τ)(a(x)|∇u(τ)−∇u(t)|+ a(x)|∇u(t)|)dτ

∥∥∥∥2
≤1

2
∥∇u(t)∥2 +

(
1

2
+

1

8ϵ6

)∥∥∥∥∫ t

0
h(t− τ)a(x)|∇u(τ)−∇u(t)|dτ

∥∥∥∥2
+

(
1

2
+
ϵ6
2

)∥∥∥∥∫ t

0
h(t− τ)a(x)|∇u(t)|dτ

∥∥∥∥2 ,

(36)

where ϵ6 with respect to Young’s inequality is a positive constant. Using
the assumption (A2) and (36), we get

∣∣∣∣∫ t

0
h(t− τ) ⟨a(x)∇u(τ),∇u(t)⟩]dτ

∣∣∣∣
≤
(
1

2
+

1

8ϵ6

)
∥a∥∞

∫ t

0
h(s)ds

∫ t

0
h(t− τ)

∥∥∥√a(x)(∇u(τ)−∇u(t))
∥∥∥2 dτ

+

(
1

2
+
ϵ6
2

)
∥∇u(t)∥2

(
∥a∥∞

∫ t

0
h(s)a(x)ds

)2

+
1

2
∥∇u(t)∥2

≤1

2
(1 + (1 + ϵ6)(1− l)2)∥∇u(t)∥2 + (4ϵ6 + 1)(1− l)

8ϵ6
(h ⋄ ∇u)(t).

(37)

Also, using Young’s and Poincaré’s inequalities gives

(38) −µ1
∫
Ω
u(t)ut(t)dx ≤ ε

∫
Ω
|∇u|2dx+ C(ε)

∫
Ω
u2t (t)dx

(39) −µ2
∫
Ω
u(t)ut(t− s(t))dx ≤ ε

∫
Ω
|∇u|2dx+C(ε)

∫
Ω
u2t (t− s(t))dx

By combining (35) and (37)-(39), we conclude

φ′(t) ≤(1 + C(ε))∥u′(t)∥2 + 1

2
(1− 2m0 + (1 + ϵ6)(1− l)2 + 2ε)∥∇u(t)∥2

+
(4ϵ6 + 1)(1− l)

8ϵ6
(h ⋄ ∇u)(t)− ∥u(t)∥γ+2

γ+2

+ C(ε)

∫
Ω
u2t (t− s(t))dx.

(40)
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Next, we estimate ψ′(t) as follows. In fact, using (1), we have

ψ′(t) =−
∫ t

0
h′(t− τ)⟨a(x)u′(t), u(t)− u(τ)⟩dτ.

−
∫ t

0
h(t− τ)⟨a(x)u′′(t), u(t)− u(τ)⟩dτ − ∥

√
a(x)u′(t)∥2

∫ t

0
h(s)ds

=−
∫ t

0
h′(t− τ)⟨a(x)u′(t), u(t)− u(τ)⟩dτ.

−
∫ t

0
h(t− τ)⟨M(x, t, ∥∇u(t)∥2)a(x)∇u(t),∇u(t)−∇u(τ)⟩dτ

−
〈∫ t

0
h(t− τ)a(x)∇u(τ)dτ,

∫ t

0
h(t− τ)a(x)(∇u(t)−∇u(τ))dτ

〉
+

∫ t

0
h(t− τ)⟨a(x)|u|γu, u(t)− u(τ)⟩dτ

− ∥
√
a(x)u′(t)∥2

∫ t

0
h(s)ds

+

∫
Ω

(∫ t

0
h(t− τ)a(x)(u(t)− u(τ))ds

)
[µ1ut(t) + µ2ut(t− s(t))]dx.

(41)

Using Cauchy inequality, Poincarè inequality and (A1), we have∣∣∣∣−∫ t

0
h′(t− τ)⟨a(x)u′(t), u(t)− u(τ)⟩dτ

∣∣∣∣
≤ϵ7∥∇u(t)∥2 +

ζ1
4ϵ7

∥∥∥∥∫ t

0
h(t− τ)a(x)|u(t)− u(τ)|dτ

∥∥∥∥2
≤ϵ7∥∇u(t)∥2 +

ζ1
4ϵ7

(1− l)C2
p(h ⋄ ∇u)(t),

(42)

where ϵ7 is a positive constant with respect to Cauchy inequality and Cp

is the Poincarè coefficient. Similarly, using Cauchy inequality and (B2),
we get

∣∣∣∣−∫ t

0
h(t− τ)⟨M(x, t, ∥∇u(t)∥2)a(x)∇u(t),∇u(t)−∇u(τ)⟩dτ

∣∣∣∣
≤ϵ8f2(∥∇u(t)∥2)∥u′(t)∥2 +

C0(1− l)

4ϵ8
(h ⋄ ∇u)(t)

(43)
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and∣∣∣∣−〈∫ t

0
h(t− τ)a(x)∇u(τ)dτ,

∫ t

0
h(t− τ)a(x)(∇u(t)−∇u(τ))dτ

〉∣∣∣∣
≤ϵ9

∥∥∥∥∫ t

0
h(t− τ)(a(x)|∇u(t)−∇u(τ)|+ a(x)|∇u(t)|)dτ

∥∥∥∥2
+

1

4ϵ9

(
∥a∥∞

∫ t

0
h(s)ds

)∫ t

0
h(t− τ)∥

√
a(x)(∇u(t)−∇u(τ))∥2dτ

≤2ϵ9

(∥∥∥∥∫ t

0
h(t− τ)a(x)|∇u(t)−∇u(τ)|dτ

∥∥∥∥2 + ∥∥∥∥∫ t

0
h(t− τ)a(x)|∇u(t)|dτ

∥∥∥∥2
)

+
1− l

4ϵ9
(h ⋄ ∇u)(t)

≤
(
2ϵ9 +

1

4ϵ9

)
(1− l)(h ⋄ ∇u)(t) + 2ϵ9(1− l)2∥∇u(t)∥2,

(44)

where ϵ8, ϵ9 are positive constants with respect to Cauchy inequality.
And also, using Cauchy inequality and Poincarè inequality, we have∣∣∣∣∫ t

0
h(t− τ)⟨a(x)|u(t)|γu, u(t)− u(τ)⟩dτ

∣∣∣∣
≤ϵ10∥u(t)∥2(γ+1)

2(γ+1) +
Cp(1− l)

4ϵ10
(h ⋄ ∇u)(t),

(45)

where ϵ10 is a positive constant with respect to Cauchy inequality and
Cp is the Poincarè coefficient. Noting H1(Ω) ↪→ L2(γ+1)(Ω) and using
Poincarè inequality, (23), (32) and (45), we get∣∣∣∣∫ t

0
h(t− τ)⟨a(x)|u(t)|γu, u(t)− u(τ)⟩dτ

∣∣∣∣
≤ϵ10C2(γ+1)

p

(
2E1(0)

l

)γ

∥∇u(t)∥2 + Cp(1− l)

4ϵ10
(h ⋄ ∇u)(t),

(46)

where Cp is the Poincarè coefficient. And also, we get

∣∣∣∣∫
Ω

(∫ t

0
h(t− τ)a(x)(u(t)− u(τ))ds

)
[µ1ut(t) + µ2ut(t− s(t))]dx

∣∣∣∣
≤ϵ10

∫
Ω
[u2t (t) + u2t (t− s(t))]dx+

Cp(1− l)

4ϵ10
(h ⋄ ∇u)(t),

(47)
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Combining (37)-(44) and (46)-(47) and also using (A2), we deduce

ψ′(t) ≤
(
ϵ7 − a20

∫ t

0
h(s)ds+ ϵ10

)
∥u′(t)∥2

+

(
ϵ8f

2(∥∇u(t)∥2) + 2ϵ9(1− l)2 + ϵ10C
2(γ+1)
p

(
2E1(0)

l

)γ)
∥∇u(t)∥2

+

(
ζ1
4ϵ7

C2
p +

C0

4ϵ8
+ 2ϵ9 +

1

4ϵ9
+

Cp

4ϵ10

)
(1− l)(h ⋄ ∇u)(t)

+ ϵ10

∫
Ω
u2t (t− s(t))dx.

(48)

Combining (33), (24), (40) and (48), we deduce

F ′(t) = E′
1(t) + ϵ2φ

′(t) + ϵ3ψ
′(t)

≤w1∥u′(t)∥2 + w2

∫
Ω
M(x, t, ∥∇u(t)∥2)|∇u(x, t)|2dx+ w3(h ⋄ ∇u(t))

− ∥u(t)∥γ+2
γ+2 + w4

∫
Ω
u2t (t− s(t))dx,

(49)

where

w1 =
m1

4ϵ1
+ (1 + C(ε))ϵ2 + ϵ3

(
ϵ7 − a20

∫ t

0
h(s)ds+ ϵ10

)
,

w2 =f(∥∇u(t)∥2)C0

[
CpC̃1 + ϵ1m1 −

1

2
a0h(t)

]
+
ϵ2f(∥∇u(t)∥2)C0

2
(1− 2m0 + (1 + ϵ6)(1− l)2 + 2ε)

+ ϵ3f(∥∇u(t)∥2)C0

(
ϵ8f

2(∥∇u(t)∥2) + 2ϵ9(1− l)2 + ϵ10C
2(γ+1)
p

(
2E1(0)

l

)γ)
,

w3 =− ζ2
2

+

[
ϵ2(4ϵ6 + 1)

8ϵ6
+ ϵ3

(
ζ1
4ϵ7

C2
p +

C0

4ϵ8
+ 2ϵ9 +

1

4ϵ9
+

Cp

4ϵ10

)]
(1− l),

w4 = ϵ2C(ε) + ϵ3ϵ10 − C2

By using the smallness condition in (A2) and (B2), for the fixed ϵi, i =
1, 4, · · · , 10, we choose ϵj > 0, j = 2, 3 and ε small enough such that
wk < 0, k = 1, 2, 3, 4. According to (23) and (49), there exist a positive
constant s such that

(50) F (t) ≤ −sE1(t)
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for all t which is larger than the fixed time T0.We conclude from (27)
and (50) that

F (t) ≤ −sα1F (t)

for all t which is larger than the fixed time T0. That is, for all t which is
larger than the fixed time T0,

(51) F (t) ≤ F (T0)e
sα1T0e−sα1t.

Therefore, we deduce from (27), (34) and (51) that there are positive
constants κ and ϑ such that

E(t) ≤ κ exp{−ϑt} for all t ≥ 0 and as t→ +∞.
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